Hyperspectral Image Classification by Fusion of Multiple Classifiers
نویسندگان
چکیده
Hyperspectral image mostly have very large amounts of data which makes the computational cost and subsequent classification task a difficult issue. Firstly, to solve the problem of computational complexity, spectral clustering algorithm is imported to select efficient bands for subsequent classification task. Secondly, due to lack of labeled training sample points, this paper proposes a new algorithm that combines support vector machines and Bayesian classifier to create a discriminative/generative hyperspectral image classification method using the selected features. Experimental results on real hyperspectral image show that the proposed method has better performance than the other state-of-the-art methods.
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملClassifier Fusion of Hyperspectral and Lidar Remote Sensing Data for Improvement of Land Cover Classifcation
The interest in the joint use of remote sensing data from multiple sensors has been remarkably increased for classification applications. This is because a combined use is supposed to improve the results of classification tasks compared to single-data use. This paper addressed using of combination of hyperspectral and Light Detection And Ranging (LIDAR) data in classification field. This paper ...
متن کاملDecision Fusion for Hyperspectral Classification
In the recent years, pixel-wise classification of hyperspectral images aroused many developments, and the literature now provides various classifiers for numerous applications. In this chapter, we present a generic framework where the redundant or complementary results provided by multiple classifiers can actually be aggregated. Taking advantage from the specificities of each classifier, the de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016